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Resul ts  of a n u m e r i c a l  evaluation of the in tegra ls  ~2 l ' s  (I = 1, 2, 3, 4 and s = I . . .  8 -  l) ,  in 
t e r m s  of which t r a n s p o r t  coeff icients  a re  e x p r e s s e d  [1], a re  given in this  paper .  The r e su l t s  
obtained a r e  of p rac t i ca l  use  for calculat ing kinetic p rope r t i e s  of ionized gases  within the 
C h a p m a n - E n s k o g  theory ,  including t h i r d - o r d e r  t e r m s  in the Sonine polynomial  expansion.  
The in tegra ls  ~2 l ,s were  calcula ted for  s ingly- ionized  colliding a i r  pa r t i c les  at t e m p e r a t u r e s  
T = 10~000-40,000~ and p r e s s u r e s  p = 0.1, 1, and 100 arm.  The s c r eened  Coulomb potential  
for a t t rac t ion  and repuls ion was the model  for e l e c t r o n - i o n  and ionic in teract ions ,  and the 
Debye screening  length was chosen by taking into account sc reening  both by e lec t rons  and by 
mult ip] .y-charged ions.  Quantum effects  a r e  not impor tan t  in the t e m p e r a t u r e  and p r e s s u r e  
ranges  cons idered  for  a i r ,  and can, t he re fo re ,  be neglected in calculat ing kinetic p r o p e r t i e s .  

1. T r a n s p o r t  p r o c e s s e s  in ionized gases  can at p resen t  be ca lcula ted  within the approximat ions  of 
the C h a p m a n - E n s k o g  theory  [1] if the s c r eened  coulomb potential  is used for the charged  par t i c les  i n t e r -  
action model .  As shown by Grad [2] and Devoto [3], the solution for ionized gases  converges  if one re ta ins  
at l e a s t  t h ree  t e r m s  in the Sonine polynomial  expansion.  In this case  the e lec t r ic  and t he rma l  condnct iv i -  
t ies  coincide with Sp i tze r ' s  asympto t ic  expres s ions  [4] for  a fully ionized gas ,  obtained by numer i ca l  so lu-  
tion of the F o k k e r - P l a n c k  equation. The p r e sence  of three  t e r m s  in the Sonine polynomial  expansion r e -  
quires  the evaluation of t r a n s p o r t  c r o s s  sect ions  Ql of o r d e r  l = 1, 2, 3, 4 and of in tegra ls  ~2 t , s  of o rde r  
s f rom s = l to s = 8 - I .  Quantum-mechanica l  co r r ec t i ons  r e l a t ed  to diffract ion effects  and par t ic le  in-  
dis t inguishabi l i ty  w e r e  cons ide red  in g r e a t  detail  by Wil l iams and Dewitt [5]. Quantum effects  become  i m -  
por tant  at suff icient ly high t e m p e r a t u r e s ,  when the de Brogl ie  wavelength becomes  g r e a t e r  than the c l a s -  
s ical  d is tance  of c l o s e s t  approach .  In the t e m p e r a t u r e  range  of i n t e re s t  for t r a n s p o r t  p rope r t i e s  of a i r ,  
quan tum-mechanica l  co r r ec t i ons  to the t r a n s p o r t  c r o s s  sect ions a re  unimpor tant .  

A calculat ion of the in tegra ls  ~ l ,s for  pa r t i c les  in teract ing through a s c r eened  Coulomb potential  
was p e r f o r m e d  in a num ber  of papers  [6-8]: However ,  the calcula t ions  by ~evoto  [6] and Liboff [71 a r e  ap-  
p rox ima te .  ~[%is enabled to obtain analytic exp re s s ions  for  the in tegra ls  ~ ,s 

~,6 = At,, ] T~ (ln A -~- BL~). (1 .1)  

which can be used  as asympto t ic  expres s ions  for A >> 1 (A = H / E ,  where  H is the Debye screening  length~ 
and E = e 2 z t z J k T ) ,  where  A l ,s and B l , s  a re  constants  for  given values of l and s .  The resu l t s  of the c a l -  
culation, for a l o w - t e m p e r a t u r e ,  low-dens i ty  gas and for  a dense p l a sma  at all  t e m p e r a t u r e s ,  d i f fer  for  a t -  
t r ac t ive  and repu l s ive  potent ials  and deviate f r o m  the analytic express ion  (1.1). An exact  numer i ca l  calcu~ 
lation of the in tegra ls  ~ l~s  was p e r f o r m e d  by Mason et a l .  [8] for a wide range  of the p a r a m e t e r  A.  How- 
e v e r ,  not all c r o s s  sect ions ,  r equ i r ed  for  the calculat ion of kinetic p rope r t i e s ,  a r e  given the re  to t h i r d - o r d e r  
Sonine polynomials  within the C h a p m a n - E n s k o g  theory .  

2. The in terac t ion  of two colliding charged  pa r t i c l e s  is desc r ibed ,  for  a t t rac t ion and repuls ion,  by 
the s c r eened  Coulomb potent ial  

(r) = T e2zlz2 r-i exp (-- r/It) (2 .i) 
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where  the plus sign co r r e sponds  to repuls ion and the minus 
sign to a t t ract ion,  

and H is the Debye screening  length, taking into account 
the e lec t ros ta t i c  effect  of all charged  par t i c les  (e is the 
e lec t ron  charge ,  z i is the ionic charge  of type i, n i is the 
number  of type - i  ions per  unit volume,  and n e is the num-  
ber  of e lec t rons  per  unit volume).  

In the c l a s s i ca l  p ic ture  the t r a j e c t o r y  of each p a r -  
t ic le  is comple te ly  de te rmined  and the sca t t e r ing  is c h a r -  
ac te r i zed  by the angle of deflection X 

X~--~--  2b i 
r~ 

dr 
r 2 ] / - i -  b~/r 2 - -  2~ (r)[9"g i -  

where  b is the impact  p a r a m e t e r ,  ~ is the reduced m a s s  of 
both colliding pa r t i c l e s ,  g is the re la t ive  veloci ty of both 
pa r t i c les  at infinity, and r m is the dis tance of c loses t  aP-  
proach,  for which the radicand vanishes .  The c ro s s  s e c -  
tion Ql is of the fo rm 

Q! ffi 2~ ~ [i --  cos / (X)] bdb (2.2) 
0 

The in tegra l s  ~2 l ,s, appear ing  in the t r a n s p o r t  coefficient  exp res s ions ,  a re  de te rmined  by a s ta t i s t ica l  
ave r age  ove r  the c r o s s  section Ql 

~ l , s  - -  4 (1-4- i) I exp (-- ?~) "r 2*+a Q! (g) dT 
(s + ~)I [4~ + 1 --  (-- l)'] o 

(2.3) 

where  ~ = ur~gZ/2kT is the reduced re la t ive  veloci ty  of the pa r t i c l e s .  
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The method of numer ica l  evaluation of the collision integrals  is d iscussed by Smith and Munn [9]. The 
difficulties due to a long-range,  sc reened  potential a re  discussed by Mason et al. [8]. The numer ica l  evalu- 
ation of the integrals  (2.2) and (2.3~ was per formed here with an accuracy  of 1%. The agreement  of our r e -  
suits with the integrals  ~2l ,s and f~l+,s for at t ract ive and repulsive potentials [8] is within the numerical  ac-  
curacy .  The air  composit ion data were  taken f rom [10, 11]. 

The calculations of the integrals  f~/,s for values of 1 and s, shown in Figs.  1-3, are  for s ingly-charged 
air  components in the t empera tu re  range T f rom 10,000 to 40,000~ and for p re s su res  p = 0.1, 1, and 100 
arm. The full curves  cor respond  to at tract ion and the dashed curves  to repulsion.  For  low p res su res  (p = 
0.1 arm) the difference between the integrals  a l , s  and f~/+,s, corresponding to attraction and repulsion poten- 
t ials ,  is less  than 5-6% for l = 1 and l = 2, and-within 1-2v/c for higher 1 and s. The parameter  A increases  
with decreas ing  air  p res su re ,  and for p <- 0.01 arm the value of A is at least  l a rge r  than 100 for the whole 
t empera tu re  interval considered,  so that the difference between at tract ion and repulsion in the potential (2.1) 
leads to an insignificant deviation of the integrals  f rom their  asymptotic  values [6]. The value of A drops 
with increas ing p r e s su re :  for a p re s su re  of 10 arm and for 6000~ -< T <- 40,000~ the value of A var ies  
f rom 6 to 40, ~md for a p re s su re  of 100 atm A var ies  f rom 2.5 to 17 in the same tempera tu re  interval .  It is 

l,s in Fig.  3 that the difference between ~2l, s and a / , s  exceeds 1% for all values of seen f rom the values of f~:  
11 and 22 l and s.  For  ~2• I2 ~ this difference is about 30%. 

Quantum cor rec t ions  do not exceed 0.3% for the t empera tu re  and p ressu re  ranges  considered here .  
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